

BRAHMS

- Designed to study nuclear reactions in broad kinematic range (y-pt)
 - 0<y<4 and 0<Pt<5 GeV/c
- 2 movable spectrometers with small solid angle for measuring charged identified hadrons precisely
- Centrality detectors to characterize events

BRAHMS Exp., Ops/Research/R&D/Upgrades D. Beavis, BNL

Overview

- **♦**BRAHMS
- ◆200 GeV Results Au+Au, d+Au, and pp
- ◆Run3
 - ➤ Operations and integrated luminosity
 - > Detector/infrastructure upgrades
- Run4
- **♦**Operations
- ◆BRAHMS near and longer term

The BRAHMS Collaboration

```
I.G. Bearden<sup>7</sup>, D. Beavis<sup>1</sup>, C. Besliu<sup>10</sup>, Y. Blyakhman<sup>6</sup>, J.Brzychczyk<sup>4</sup>, B. Budick<sup>6</sup>, H. Bøggild<sup>7</sup>, C. Chasman<sup>1</sup>, C. H. Christensen<sup>7</sup>, P. Christiansen<sup>7</sup>, J.Cibor<sup>4</sup>, R.Debbe<sup>1</sup>, E. Enger<sup>12</sup>, J. J. Gaardhøje<sup>7</sup>, M. Germinario<sup>7</sup>, K. Grotowski<sup>4</sup>, K. Hagel<sup>8</sup>, O. Hansen<sup>7</sup>, A.K. Holme<sup>12</sup>, H. Ito<sup>11</sup>, E. Jacobsen<sup>7</sup>, A. Jipa<sup>10</sup>, J. I. Jordre<sup>10</sup>, F. Jundt<sup>2</sup>, C.E.Jørgensen<sup>7</sup>, R. Karabowicz<sup>4</sup>, T. Keutgen<sup>9</sup>, E. J. Kim<sup>5</sup>, T. Kozik<sup>3</sup>, T.M.Larsen<sup>12</sup>, J. H. Lee<sup>1</sup>, Y. K.Lee<sup>5</sup>, G. Løvhøjden<sup>2</sup>, Z. Majka<sup>3</sup>, A. Makeev<sup>8</sup>, B. McBreen<sup>1</sup>, M. Mikkelsen<sup>12</sup>, M. Murray<sup>8</sup>, J. Natowitz<sup>8</sup>, B.S.Nielsen<sup>7</sup>, K. Olchanski<sup>1</sup>, D. Ouerdane<sup>7</sup>, R.Planeta<sup>4</sup>, F. Rami<sup>2</sup>, D. Roehrich<sup>9</sup>, B. H. Samset<sup>12</sup>, D. Sandberg<sup>7</sup>, S. J. Sanders<sup>11</sup>, R.A.Sheetz<sup>1</sup>, Z.Sosin<sup>3</sup>, P. Staszel<sup>7</sup>, T.S. Tveter<sup>12</sup>, F.Videbæk<sup>1</sup>, R. Wada<sup>8</sup>, A.Wieloch<sup>3</sup> and I. S. Zgura<sup>10</sup>
```

¹Brookhaven National Laboratory, USA, ²IReS and Université Louis Pasteur, Strasbourg, France ³Jagiellonian University, Cracow, Poland, ⁴Institute of Nuclear Physics, Cracow, Poland ⁵Johns Hopkins University, Baltimore, USA, ⁶New York University, USA ⁷Niels Bohr Institute, Blegdamsvej 17, University of Copenhagen, Denmark ⁸Texas A&M University, College Station. USA, ⁹University of Bergen, Norway ¹⁰University of Bucharest, Romania, ¹¹University of Kansas, Lawrence, USA ¹² University of Oslo Norway

55 collaborators, 12 institutions, 6 countries

28 Scientists, 3 Post Docs., 7 PhD students, 6 MS students

Completed Theses:

- P.Christiansen NBI (2003) Ph.D.
- H. Ito Univ. of Kansas (2002) Ph.D.
- Y. Blyakhman NYU (2001) Ph.D.
- D. Ouerdane NBI (2003) Ph.D.
- C.E. Jorgensen NBI (2002) M.S., presently Ph.D. student
- B. H. Samset OSLO (2001) M.S., presently Ph.D. student
- J.I. Jordre Bergen (2000) M.S., presently Ph.D. student
- A. Makeev TAMU M.S. (2001)
- E. Jorgensen NBI M.S. (2002)
- C. Holm NBI M.S. (2002)
- M.T.Larsen Oslo M.S. (2003)

Publications

- Rapidity Dependence of High P_T Suppression in Au+Au..., to be submitted to PRL (2003)
- Rapidity dependence of Charged Anti-particle to particle..., PRL 90, 102301 (2003)
- The Brahms Experiment, NIM A499, 437 (2003)
- Pseudorapidity Distributions... At the maximum RHIC energy, PRL 88, 202301 (2002)
- Rapidity Dependence of Anti-proton... at 130 GeV, PRL 87, 112305 (2001)
- Charged Particle Densities ... At 130 GeV, PL B523, 227 (2001)

2003- 4 conference proceedings

2002-14 conference proceedings

Publications in preparation

- Rapidity distributions of kaons and pions
- Centrality dependence of charged hadrons at y~0
- Net-proton distributions
- Thermal and kinetic freeze-out properties in Au-Au collisions over wide rapidity range.
- Rapidity dependence of charged-hadron ratios in pp collisions

pion and kaon spectra for y = 0 - 3.5 for 0-5% central Au+Au

Pion: Power law fit

Kaon: m_T single exponential fit

<pt> vs rapidity for π and k

<pt> (and inverse slope) for π and k decrease slowly
with rapidity (0-3: 10-15% decrease)

dN/dy of pion and kaon for 0-5% Central Au+Au at $\sqrt{S_{NN}}$ =200 GeV

- No clear "plateau" observed
- Rapidity densities : Close to a Gaussian shape $(\sigma(\pi+) = 2.35 \sim \sigma(k+) = 2.39)$
- Yield is extrapolated from a double Gaussian (better description of data)
- Total yield in agreement with published $dN/d\eta$ measurements from multiplicity detectors

Strangeness: K/π systematics

- K^+/π^+ ratio flattens at RHIC energy at y=0 and for integrated yield
- K^{-}/π^{-} increases with energy

Proton and anti-proton spectra for y = 0 - 3 for 0-5% central Au+Au

dN/dy of Net-proton and Models for 0-10% central

- "Plateau" at |y| < ± 1
- Net-baryon at y =0: ~16 (if N(proton)/N(neutron) \approx 1 N(net- Λ)=0.9*N(net-proton))
- Hyperon feed down correction decrease yields by 18, 20% at y=0,2.9
- A range of models are still allowed with these data.

Energy dependent Net-proton

- AGS->RHIC : Stopping -> Transparency
- Net proton peak $> y \sim 2$

Thermal Freeze-out Parameters from Hydrodynamic Fit

Ref.: E.Schnedermann et al, PRC48 (1993) 2462

- Spectra are described by T_{FO} and $<\beta_T>$:
- $<\beta_T>\sim 0.62-0.53$, $T_{FO}\sim 119-133$ from 0-10% to 40-60% central
- $\langle \beta_T \rangle$ Increase at RHIC, $T_{FO} \sim AGS \sim SPS$?

High Pt suppression

d+Au Charged Hadron Spectra

d+Au Nuclear Modification $\eta = 0$

High p_T enhancement observed in d+Au collisions at $\sqrt{s_{NN}}$ =200 GeV.

Comparing Au+Au to d+Au

⇒ strong effect of dense nuclear medium

Transverse Spin

- Large spin effects observed for $\sqrt{s} = 200$ GeV pp collisions
- Measured cross sections consistent with pQCD calculations

Transverse Spin in BRAHMS

- Charged pions at $x_f \sim 0.3$
- Expect asymmetry of 1-5% for π^+
- Requires good systematics (< 0.3% with 30% beam pol.)
 - Run3 measurement ~0.15%
- Under Run3 Conditions, ~1week to make significant measurement

Summary of 200 GeV Results

- p_T spectra of pions and kaons (0<y<4)
 - Systematic decrease in inverse slopes with increasing y
 - Rapidity distributions are near Gaussian
 - Not Boost Invariant
 - K+/K- at high rapidity a problem for models odels
 SPS-RHIC)
 ing radial expansion with centrality (y=0)
 freezeout temperature with centrality (y=0)

Summary of 200 GeV results

Net proton Yields

- Flat for $0 \le y \le 1.5$ dn/dy= 7.3 ± 0.5 at y = 0
- Rises for y>2 dn/dy=12.9±0.4 at y=3
- The rapidity loss of protons is estimated to be in the range of 1.8 to 2.4 for central collisions

• High p_T suppression

- Au+Au high p_T suppression at $\eta=0$ and $\eta=2$
- d+Au do not see suppression at $\eta=0$

• pp Running

- Reference data analysis in progress
- Commissioned spin physics program

RUN3 ops/data/upgrades

- Operations
- Integrated Luminosity
- List of upgrades

Run3 Operations

- Mature experimental operation
 - Hardware is stable and understood
 - Monitor software to check data quality
- Shift operations
 - 1 person shift
 - 2 persons for inexperienced shifter
 - Experts available on call and via internet
 - Experts check the operation/data quality

Run3 d-Au summary

- Low-pt survey: Done
- High-pt at selected rapidities (~0,1,2,3)
 - MRS: 27% of 15 nb⁻¹ goal 9M at triggers at 90deg.: 10M at 40 deg:
 - FS: 20% of 15 nb⁻¹ goal 4M triggers at 4 deg., y~3 1.2M at triggers 12deg., y~2

Run3 pp summary

- •69 nb⁻¹ integrated luminosity taken (May 3-23) (RHIC delivered ~ 300 nb⁻¹) (Counting inelastic triggers in 5.5 ns timing window)
- y~3 high-pt measurement: up to pt ~ 3 GeV/c for π -
- Limited statistics for y~2 high-pt measurement (pt~2.5 GeV/c π –)
- •+ limited stat. at y~0,1
- Obtained pp comparison sample
- Commissioned spin scalars for future transverse spin asymmetries measurements

Run3 Upgrades

- CA Support
 - Shielding for Forward spectrometer
 - Reduce background from tunnel
 - Walkover for MRS extensions
 - Engineering and design for detectors added
 - Operations support
 - Magnets, power supplies,...
 - Survey
 - Electronic (HEEP)

Run3 Upgrades cont.

- MRS trigger/start counter
- Trigger Electronics for TOF hodoscopes
 - -30-40% eff. For MRS
 - -40% eff. for FS
- New TOF wall for MRS
 - Improve PID
 - π/K from 2.2 GeV/c to 3.0 GeV/c
 - K/p from 3.7 GeV/c to 5 GeV/c
 - Hit counter behind threshold Cherenkov

C4 Threshold Cherenkov

1 atm. C₄F₁₀, U. Kansas and BNL

1 pmt only & 1 pe peak cut

Run4 Upgrades and Prep.

- Infrastructure (CA)
 - Shielding from Tunnel Radiation
 - Extend walkover
 - Facility improvement
 - FEH, counting house, electrical
- Luminosity (CA)
 - Poor Field Quality in Triplet—β* limits at BRAHMS
 - Implement Corrector PS (being considered)
 - 30% increase in data for Run4

Run4 Detector Upgrades

- Ion-Ion running
 - MRS&FS trigger counters
 - Increase efficiency
 - Increase peripheral data sample
 - Flow Measurement
 - Rearrange/add Si
 - Add pmt/scint. detector

Run4 Detector Preparation

- Si
 - Replace some chips that are damaged
 Replacements in hand
 - May impact Si arrangement for Flow measurement
- Beam-Beam counter
 - Signal reduction (gain)
 - Examining cause and repair
 - Increase coverage (new detectors)
- Electronics repairs

Coll. Responsibilities

Hardware maintenance, readiness

```
-TPCs, C1, RICH, TOFW, DAQ, gas systems, trigger electronics,
    trigger counters (BNL)
    - H1, H2 (NBI)
    -DC(Krakow)
    -Tiles, Silicon, C4 (U. Kansas, Johns Hopkins U., BNL)
    -BBC (NYU)
    -ZDC (TAMU)
Physics Analysis
    -Overall integration (TAMU, NBI, BNL)
    -MRS analysis (BNL)
    -FS analysis (NBI, OSLO, BNL, TAMU)
```

-Tracking (Bergen, Oslo, Krakow, BNL)

Collaboration Responsibilities

- Experiment Management (BNL)
 - Scientific
 - Infrastructure (CA + Physics)
 - Run Management
- Funding issues (BNL)
 - personnel increase would directly increase physics output
 - Increment in detector funds would improve reliability and the modest detector upgrade designs

User-BNL Interface

- BRAHMS users polled by e-mail
 - Very pleased with BNL support systems
- Technical Support
 - Computing (Physics & RCF)
 - Electronics/Detector (Physics & CA)
 - Prep. Work before arrival (Physics)
- Misc. BNL (RHIC/AGS Users' Center)
 - Training and general
- Internal BRAHMS (Physics-admin.)
 - Travel, housing, supplies, visas,...

BRAHMS' Near Term

- Baseline Measurements (3-4 yrs.)
 - Focus on unique forward coverage
 - Transverse spectra of π , K, p etc
 - Elliptic Flow
 - Small-x physics
 - Transverse flow
 - p_T suppression of high Pt particles
 - Transverse spin measurements at $x_f=0.2$ to 0.5
 - Modest Upgrades for optimal continuation of this program

BRAHMS' Near Term

- Beams required
 - Au+Au (200 GeV and lower energy)
 - Polarized pp
 - Lighter ions (includes asymmetric systems)
 - Order of priorities will be in Beam Use
 Proposal (August)

BRAHMS' Longer Term

- RUN4 & RUN5—full commitment of the entire collaboration
- RUN6 & Run7– Decreased effort from portions of Collaboration (ALICE)
 - Timing is uncertain
 - Committed to BRAHMS ALAP
- Present Baseline BRAHMS' program will be complete after Run7

Beyond BRAHMS' Baseline

- Form a new collaboration
- Ongoing discussions in/out of BRAHMS
- May utilize some portion of BRAHMS
- Physics Goals (TBD)
 - Precision measurement
 - Unique region of phase space
 - Build on what has been learned at RHIC

Conclusions

- BRAHMS is ready to complete the measurements of charged hadron production with its unique y-p_t coverage
- Modest additional funding will increase the physics output and capability